Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 14(1): 9131, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644374

ABSTRACT

The chloroplast (cp) genome sequence of Mussaenda pubescens, a promising resource that is used as a traditional medicine and drink, is important for understanding the phylogenetic relationships among the Mussaenda family and genetic improvement and reservation. This research represented the first comprehensive description of the morphological characteristics of M. pubescens, as well as an analysis of the complete cp genome and phylogenetic relationship. The results indicated a close relationship between M. pubescens and M. hirsutula based on the morphological characteristics of the flower and leaves. The cp was sequenced using the Illumina NovaSeq 6000 platform. The results indicated the cp genome of M. pubescens spanned a total length of 155,122 bp, including a pair of inverted repeats (IRA and IRB) with a length of 25,871 bp for each region, as well as a large single-copy (LSC) region and a small single-copy (SSC) region with lengths of 85,370 bp and 18,010 bp, respectively. The results of phylogenetic analyses demonstrated that species within the same genus displayed a tendency to group closely together. It was suggested that Antirhea, Cinchona, Mitragyna, Neolamarckia, and Uncaria might have experienced an early divergence. Furthermore, M. hirsutula showed a close genetic connection to M. pubescens, with the two species having partially overlapping distributions in China. This study presents crucial findings regarding the identification, evolution, and phylogenetic research on Mussaenda plants, specifically targeting M. pubescens.


Subject(s)
Genome, Chloroplast , Phylogeny , Plant Leaves/genetics , Sequence Analysis, DNA/methods
2.
Physiol Plant ; 176(2): e14299, 2024.
Article in English | MEDLINE | ID: mdl-38628104

ABSTRACT

Mussaenda pubescens (Mp) is a valuable medicinal plant that has traditionally been used for medicinal purposes or as a tea substitute. However, there are few studies on the comprehensive and dynamic evaluation of Mp metabolites. This study used an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach and biochemical analysis to investigate substance changes in leaves at three different stages and elucidate the relationship between metabolites and antioxidant capacity. The findings showed that Mp leaves contained 957 metabolites, the majority of which were phenolic acids, lipids, and terpenoids. The metabolite profiling of Mp leaves was significantly influenced by their growth and development at different stages. A total of 317 differentially accumulated metabolites (DAMs) were screened, including 150 primary metabolites and 167 secondary metabolites, with 202 DAMs found in bud leaf vs. tender leaf, 54 DAMs in tender leaf vs. mature leaf, and 254 DAMs in bud leaf vs. mature leaf. Total phenolics, flavonoids, and anthocyanin concentrations decreased as Mp leaves grew and developed, whereas terpenoids increased significantly. The secondary metabolites also demonstrated a positive correlation with antioxidant activity. Phenolics, flavonoids, terpenoids, and anthocyanins were the primary factors influencing the antioxidant activity of leaves. These findings provide new insights into the metabolite formation mechanism, as well as the development and utilization of Mp tea.


Subject(s)
Anthocyanins , Antioxidants , Antioxidants/metabolism , Anthocyanins/metabolism , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods , Flavonoids/metabolism , Phenols/metabolism , Tea/metabolism , Terpenes/metabolism , Plant Leaves/metabolism
3.
Microbes Environ ; 35(3)2020.
Article in English | MEDLINE | ID: mdl-32554939

ABSTRACT

Bacteria exhibiting 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, which inhibits the biosynthesis of ethylene in higher plants, promote plant growth through the degradation of ethylene precursors, such as ACC. ACC deaminase activity in Bradyrhizobium sp. SUTN9-2 was enhanced by genetic engineering and adaptive laboratory evolution (ALE)-based methods. The transferal of a plasmid containing the acdR and acdS genes into SUTN9-2 was genetic engineering improved, while the ALE method was performed based on the accumulation of an adaptive bacterial population that continuously grew under specified growth conditions for a long time. ACC deaminase enzyme activity was 8.9-fold higher in SUTN9-2:pMG103::acdRS and 1.4-fold higher in SUTN9-2 (ACCDadap) than in the wild-type strain. The effects of increased activity were examined in the host plant (Vigna radiata (L.) R.Wilczek SUT1). The improved strains enhanced nodulation in early stage of plant growth. SUTN9-2:pMG103::acdRS also maintained nitrogen fixation under water deficit conditions and increased the plant biomass after rehydration. Changes in nucleotides and amino acids in the AcdS protein of SUTN9-2 (ACCDadap) were then investigated. Some nucleotides predicted to be located in the ACC-binding site were mutated. These mutations may have increased ACC deaminase activity, which enhanced both symbiotic interactions and drought tolerance and promoted recovery after rehydration more than lower ACC deaminase activity. Adaptive evolution represents a promising strategy for further applications in the field.


Subject(s)
Bradyrhizobium/physiology , Carbon-Carbon Lyases/metabolism , Symbiosis , Vigna/microbiology , Water/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/genetics , Ethylenes/metabolism , Mutation , Nitrogen Fixation , Plant Root Nodulation , Protein Conformation , Vigna/growth & development , Vigna/metabolism
4.
Ciênc. rural ; 46(5): 790-795, May 2016. tab, graf
Article in English | LILACS | ID: lil-777280

ABSTRACT

ABSTRACT: Rapeseed (Brassica napus L.) with purple-red leaf is a valuable resource for plant breeder. It was utilized in breeding program as a morphological marker, and the source of resistance gene to biotic or abiotic stress due to its anthocyanin content (AC). However, the inheritance of AC and the correlation with chlorophyll content (CC) in rapeseed leaf are still unknown. This study aimed to investigate the gene action and heritability of AC and CC in a 10-Zi006 × 10-4438 rapeseed cross using generation mean analysis. The results indicated that AC and CC were controlled by main gene effect and non-allelic interactions. The AC was mainly controlled by genetic effect. However, the genetic effect and non-genetic effect were both important for CC. In addition, the total fixable gene effects was higher than unfixable gene effects for AC, but opposite results was found for CC. Both negative and positive correlations between AC and CC were obtained in different generations.


RESUMO: Colza (Brassica napus L.) de folhas vermelho-púrpura é um recurso valioso para os produtores. Foi utilizada em programas de melhoramento como um marcador morfológico ao gene de resistência a estresses abióticos, bióticos ou devido ao seu teor de antocianinas (AC). No entanto, a herança da AC e a correlação com o teor de clorofila (CC) na folha de colza ainda são desconhecidos. Este estudo teve como objetivo investigar a ação dos genes e hereditariedade da CA e CC em 10 Zi006 × 10-4438 colza, usando geração de análise. Os resultados indicaram que CA e CC foram controladas por efeito do gene principal e interacções não-alélicas. O AC foi controlado principalmente por efeito genético. No entanto, os efeitos genético e não genético foram ambos importantes para CC. Além disso, o total de efeitos gênicos solucionáveis foi maior do que os efeitos de genes para AC, mas os resultados opostos foram encontrados para CC. Correlações negativas e positivas entre CA e CC foram obtidas em diferentes gerações.

SELECTION OF CITATIONS
SEARCH DETAIL
...